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Introduction

Earlier in the course, I warned you about how, over the
years, people have occasionally gotten into trouble by
ignoring various indeterminacies and ambiguities in
seemingly well-established quantities.
In Rencher’s homework problem 2.23, and in the author’s
treatment of the Singular Value Decomposition (SVD), this
kind of situation is illustrated beautifully, so I thought we’d
digress, have some fun, and discover what went wrong in
the author’s treatment of the topic.
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The SVD

For a rank k matrix A, of order n × p, the singular value
decomposition, or SVD, is a decomposition of A as

A = UDV ′ (1)

where U is n × k , D is k × k , and V is p × k .
Rencher goes on, as many authors do, to state that
D = diag(λ1, λ2, . . . , λk ) consists of diagonal elements that
are the square root of the non-zero eigenvalues of AA′, and
U and V are normalized eigenvectors of AA′ and A′A,
respectively, so that, of course, U ′U = V ′V = I .
This would seem to furnish several easy ways to compute
the SVD of A. For example, the most direct might seem to
be to follow Rencher’s prescription exactly, using an
eigenvalue routine.
We are fortunate, because R has a routine svd() that will
provide us with a correct SVD solution.
Let’s try it on problem 2.23 in Rencher.
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> A <- matrix(c(4,7,-1,8,-5,-2,4,2,-1,3,-3,6),4,3)

> A

[,1] [,2] [,3]

[1,] 4 -5 -1

[2,] 7 -2 3

[3,] -1 4 -3

[4,] 8 2 6

> svd1 <- svd(A)

> svd1

$d

[1] 13.161210 6.999892 3.432793

$u

[,1] [,2] [,3]

[1,] -0.2816569 0.7303849 -0.42412326

[2,] -0.5912537 0.1463017 -0.18371213

[3,] 0.2247823 -0.4040717 -0.88586638

[4,] -0.7214994 -0.5309048 0.04012567

$v

[,1] [,2] [,3]

[1,] -0.8557101 0.01464091 -0.5172483

[2,] 0.1555269 -0.94610374 -0.2840759

[3,] -0.4935297 -0.32353262 0.8073135
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> ## test it out

> ## note that d is provided as a vector

> ## so when computing UDV', need to construct d

> svd1$u %*% diag(svd1$d) %*% t(svd1$v)

[,1] [,2] [,3]

[1,] 4 -5 -1

[2,] 7 -2 3

[3,] -1 4 -3

[4,] 8 2 6

It worked perfectly. Now, let’s try do reproduce the above
SVD using the description in Rencher.
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We start by taking the eigendecomposition of AA′.

> decomp <- eigen(A %*% t(A))

> decomp

$values

[1] 1.732174e+02 4.899849e+01 1.178407e+01 8.047847e-15

$vectors

[,1] [,2] [,3] [,4]

[1,] -0.2816569 0.7303849 -0.42412326 0.4553316

[2,] -0.5912537 0.1463017 -0.18371213 -0.7715340

[3,] 0.2247823 -0.4040717 -0.88586638 -0.0379443

[4,] -0.7214994 -0.5309048 0.04012567 0.4426835

Remember that, because A is only rank 3, we need to grab
only the first 3 eigenvectors!

> U <- decomp$vectors[,1:3]

James H. Steiger The Great SVD Mystery



Introduction
The SVD

An Example
Non-Uniqueness of Eigenvectors

An Example

Next we decompose A′A

> decomp <- eigen(t(A) %*% A)

> decomp

$values

[1] 173.21745 48.99849 11.78407

$vectors

[,1] [,2] [,3]

[1,] 0.8557101 -0.01464091 -0.5172483

[2,] -0.1555269 0.94610374 -0.2840759

[3,] 0.4935297 0.32353262 0.8073135

> V <- decomp$vectors

> D <- diag(sqrt(decomp$values[1:3]))

We are all set to go!
Let’s try it out.
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Oops!

> U %*% D %*% t(V)

[,1] [,2] [,3]

[1,] -2.493848 5.827188 -1.350780

[2,] -6.347599 2.358302 -4.018258

[3,] 4.145900 -2.272253 -1.910074

[4,] -8.142495 -2.078259 -5.777596

Oops! This did not work. Why not?
Let me be even more directive. Here is an approach that
does work. We simply calculate V ′ a different way, that is,
V ′ = D−1U ′A and transpose the result.
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Oops!

> Vprime <- solve(D) %*% t(U) %*% A

> U %*% D %*% Vprime

[,1] [,2] [,3]

[1,] 4 -5 -1

[2,] 7 -2 3

[3,] -1 4 -3

[4,] 8 2 6

> ##It worked!

> V <- t(Vprime)

Why did one approach work, and the other not work? Try
to solve the problem before looking at the following slides.
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Non-Uniqueness of Eigenvectors

When authors (like Rencher) speak of “the eigenvectors” of
a symmetric matrix, they are mis-characterizing the
situation.
Eigenvectors are unique only up to a reflection, i.e.,
multiplication by ±1.
Consider any p × k matrix X .
Define a reflector matrix R as a diagonal matrix with all
diagonal elements equal to ±1.
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Non-Uniqueness of Eigenvectors

Consider all the possible reflections XR of the columns of
X .
There are 2k−1 possible reflections of X that are not equal
to X . Index the reflection by the specific reflector matrix
Rj .
Now consider any nonsingular diagonal matrix D . It is
easy to verify that RjDRj = D for any choice of the 2k−1

reflector matrices. Moreover, it is also the case that
D−1RjD = Rj . On the other hand, for two different
reflector matrices Rj , Rk , it will never be the case that
RkDRj = D .
So of course, if a symmetric matrix W has an
Eckart-Young decomposition W = VDV ′, it is also the
case that W = V jDV ′j , where V j = VRj , since
V jDV ′j = V (RjDRj )V

′ = VDV ′.
Which specific V j is generated is a semi-random event that
depends on precisely how the program generates the
eigenvectors.
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Solving the Mystery

The SVD is not unique either.
To see why, suppose that A = UDV ′. Then clearly,
A = U jDV ′j , where U j = URj and V j = VRj . Note
that the same Rj is applied to both matrices.
For any valid pair U ,V , there are 2k−1 other pairs of the
form U j ,V j .
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Solving the Mystery

Now we are in a position to see what can go wrong with
the solution as described by Rencher. Suppose
A = UDV ′, for a specific U and V .
When you take the eigendecomposition of AA′, all you can
be sure of is that you obtained eigenvectors U j = URj for
some Rj , with the identity matrix among the possibilities
for R in this case, and eigenvalues D2. You can take
square roots to obtain D , but your U may not be the same
as the “correct” U .
When you take the eigendecomposition of A′A, your VRk

may not be permuted from the “correct”V by the same Rj

that permuted U . That is, Rj may not be equal to Rk .
Suppose you follow Rencher’s directions. When you try to
reconsitute A from your “solution” as A = URjDRkV

′,
you will find it is incorrect (unless you are lucky and
Rj = Rk ).
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Solving the Mystery

On the other hand, suppose you have your U j = URj and
the correct D . Then, if you compute V ′ as
V ′ = D−1U ′jA, you will obtain

V ′ = D−1Rj (U
′U )DV ′ (2)

= (D−1RjD)V ′ (3)

= RjV
′ (4)

since U ′U = I , and D−1RjD = Rj .
Notice now, with this approach, you obtain a U and V
that have, in effect, been permuted by the same Rj , so
regardless of which permutation the Rj was, this method
will produce a correct solution.
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